An inverse-free ADI algorithm for computing Lagrangian invariant subspaces

نویسندگان

  • Volker Mehrmann
  • Federico Poloni
چکیده

The numerical computation of Lagrangian invariant subspaces of large scale Hamiltonian matrices is discussed in the context of the solution of Lyapunov and Riccati equations. A new version of the low-rank alternating direction implicit method is introduced, which in order to avoid numerical difficulties with solutions that are of very large norm, uses an inverse-free representation of the subspace and avoids inverses of ill-conditioned matrices. It is shown that this prevents large growth of the elements of the solution which may destroy a low-rank approximation of the solution. A partial error analysis is presented and the behavior of the method is demonstrated via several numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemannian Newton and conjugate gradient algorithm for computing Lagrangian invariant subspaces ∗

The computation of Lagrangian invariant subspaces of a Hamiltonian matrix, or the closely related task of solving algebraic Riccati equations, is an important issue in linear optimal control, stochastic control and H∞-design. We propose a new class of Riemannian Newton methods that allows to compute isolated Lagrangian invariant subspaces of a Hamiltonian matrix. The algorithm implements a vari...

متن کامل

New Algorithm For Computing Secondary Invariants of Invariant Rings of Monomial Groups

In this paper, a new  algorithm for computing secondary invariants of  invariant rings of monomial groups is presented. The main idea is to compute simultaneously a truncated SAGBI-G basis and the standard invariants of the ideal generated by the set of primary invariants.  The advantage of the presented algorithm lies in the fact that it is well-suited to complexity analysis and very easy to i...

متن کامل

On Computing Stable Lagrangian Subspaces of Hamiltonian Matrices and Symplectic Pencils∗

This paper presents algorithms for computing stable Lagrangian invariant subspaces of a Hamiltonian matrix and a symplectic pencil, respectively, having purely imaginary and unimodular eigenvalues. The problems often arise in solving continuousor discrete-time H∞-optimal control, linear-quadratic control and filtering theory, etc. The main approach of our algorithms is to determine an isotropic...

متن کامل

Geometric Insight and Structure Algorithms for Unknown-State, Unknown-Input Reconstruction in Linear Multivariable Systems

An algebraic approach to the synthesis of a dynamic system that reconstructs the generic inaccessible input of a discrete-time linear multivariable system with unknown initial state is discussed. The method devised exploits geometric properties of key subspaces for the original system and algebraic properties of the Moore-Penrose inverse of Toeplitz matrices related to the algorithms for comput...

متن کامل

DPML-Risk: An Efficient Algorithm for Image Registration

Targets and objects registration and tracking in a sequence of images play an important role in various areas. One of the methods in image registration is feature-based algorithm which is accomplished in two steps. The first step includes finding features of sensed and reference images. In this step, a scale space is used to reduce the sensitivity of detected features to the scale changes. Afterw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016